202 research outputs found

    High-fidelity indirect readout of trapped-ion hyperfine qubits

    Full text link
    We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a 9Be+^9\text{Be}^+ qubit ion is mapped to a 25Mg+^{25}\text{Mg}^+ readout ion using laser-driven Raman transitions. By partitioning the 9Be+^9\text{Be}^+ ground state hyperfine manifold into two subspaces representing the two qubit states and choosing appropriate laser parameters, the protocol can be made robust to spontaneous photon scattering errors on the Raman transitions, enabling repetition for increased readout fidelity. We demonstrate combined readout and back-action errors for the two subspaces of 1.20.6+1.1×1041.2^{+1.1}_{-0.6} \times 10^{-4} and 00+1.9×1050^{+1.9}_{-0} \times 10^{-5} with 68% confidence while avoiding decoherence of spectator qubits due to stray resonant light that is inherent to direct fluorescence detection.Comment: 7 + 6 pages, 3 + 1 figure

    Quantifying the Effects of Known Unknowns on Inferred High-redshift Galaxy Properties: Burstiness, the IMF, and Nebular Physics

    Full text link
    The era of the James Webb Space Telescope ushers stellar populations models into uncharted territories, particularly at the high-redshift frontier. In a companion paper, we apply the \texttt{Prospector} Bayesian framework to jointly infer galaxy redshifts and stellar populations properties from broad-band photometry as part of the UNCOVER survey. Here we present a comprehensive error budget in spectral energy distribution (SED) modeling. Using a zphot>9z_{\rm phot}>9 sample, we quantify the systematic shifts stemming from various model choices in inferred stellar mass, star formation rate (SFR), and age. These choices encompass different timescales for changes in the star formation history (SFH), non-universal stellar initial mass functions (IMF), and the inclusion of variable nebular abundances, gas density and ionizing photon budget. We find that the IMF exerts the strongest influence on the inferred properties: the systematic uncertainties can be as much as 1 dex, 2--5 times larger than the formal reported uncertainties in mass and SFR; and importantly, exceed the scatter seen when using different SED fitting codes. This means that a common practice in the literature of assessing uncertainties in SED-fitting processes by comparing multiple codes is substantively underestimating the true systematic uncertainty. Highly stochastic SFHs change the inferred SFH by much larger than the formal uncertainties, and introduce 0.8\sim 0.8 dex systematics in SFR and 0.3\sim 0.3 dex systematics in average age. Finally, employing a flexible nebular emission model causes 0.2\sim 0.2 dex systematic increase in mass, comparable to the formal uncertainty. This paper constitutes one of the initial steps toward a complete uncertainty estimate in SED modeling.Comment: Submitted to ApJ. 18 pages, 8 figures, 2 table

    BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers.

    Get PDF
    T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs

    UNCOVER: Illuminating the Early Universe -- JWST/NIRSpec Confirmation of z>12z > 12 Galaxies

    Full text link
    Observations of high-redshift galaxies provide a critical direct test to the theories of early galaxy formation, yet to date, only four have been spectroscopically confirmed at z>12z>12. Due to strong gravitational lensing over a wide area, the galaxy cluster field Abell~2744 is ideal for searching for the earliest galaxies. Here we present JWST/NIRSpec observations of two galaxies: a robust detection at zspec=12.3930.001+0.004z_{\rm spec} = 12.393^{+0.004}_{-0.001}, and a plausible candidate at zspec=13.0790.001+0.013z_{\rm spec} = 13.079^{+0.013}_{-0.001}. The galaxies are discovered in JWST/NIRCam imaging and their distances are inferred with JWST/NIRSpec spectroscopy, all from the JWST Cycle 1 UNCOVER Treasury survey. Detailed stellar population modeling using JWST NIRCam and NIRSpec data corroborates the primeval characteristics of these galaxies: low mass (108 M\sim 10^8~{\rm M_\odot}), young, rapidly-assembling, metal-poor, and star-forming. Interestingly, both galaxies are spatially resolved, having lensing-corrected rest-UV effective radii on the order of 300-400 pc, which are notably larger than other spectroscopically confirmed z12z \gtrsim 12 systems. The observed dynamic range of z12z \gtrsim 12 size spans over an order of magnitude, implying a significant scatter in the size-mass relation at early times. Deep into the epoch of reionization, these discoveries elucidate the emergence of the first galaxies.Comment: submitted to ApJL; 13 pages, 4 figures, 2 table

    UNCOVER: The growth of the first massive black holes from JWST/NIRSpec -- spectroscopic confirmation of an X-ray luminous AGN at z=10.1

    Full text link
    The James Webb Space Telescope is now detecting early black holes (BHs) as they transition from "seeds" to supermassive BHs. Recently Bogdan et al. (2023) reported the detection of an X-ray luminous supermassive BH, UHZ-1, with a photometric redshift at z>10z > 10. Such an extreme source at this very high redshift provides new insights on seeding and growth models for BHs given the short time available for formation and growth. Harnessing the exquisite sensitivity of JWST/NIRSpec, here we report the spectroscopic confirmation of UHZ-1 at z=10.073±0.002z = 10.073 \pm 0.002. We find that the NIRSpec/Prism spectrum is typical of recently discovered z~10 galaxies, characterized primarily by star-formation features. We see no clear evidence of the powerful X-ray source in the rest-frame UV/optical spectrum, which may suggest heavy obscuration of the central BH, in line with the Compton-thick column density measured in the X-rays. We perform a stellar population fit simultaneously to the new NIRSpec spectroscopy and previously available photometry. The fit yields a stellar mass estimate for the host galaxy that is significantly better constrained than prior photometric estimates (M1.40.4+0.3×108MM_*\sim 1.4^{+0.3}_{-0.4} \times 10^8 M_\odot). Given the predicted BH mass (MBH107108MM_{\rm BH}\sim10^7-10^8 M_\odot), the resulting ratio of MBH/MM_{\rm BH}/M_* remains two to three orders of magnitude higher than local values, thus lending support to the heavy seeding channel for the formation of supermassive BHs within the first billion years of cosmic evolution.Comment: 9 pages, 4 figures, submitted to ApJL. Minor text correction

    UNCOVER: Candidate Red Active Galactic Nuclei at 3<z<7 with JWST and ALMA

    Full text link
    The James Webb Space Telescope (JWST) is revolutionizing our knowledge of z>5z>5 galaxies and their actively accreting black holes. Using the JWST Cycle 1 Treasury program Ultradeep NIRSpec and NIRCam ObserVations before the Epoch of Reionization (UNCOVER) in the lensing field Abell 2744, we report the identification of a sample of little red dots at 3<zphot<73 < z_{\rm{phot}} < 7 that likely contain highly-reddened accreting supermassive black holes. Using a NIRCam-only selection to F444W<27.7<27.7 mag, we find 26 sources over the 45\sim45 arcmin2^{2} field that are blue in F115W-F200W0\sim0 (or βUV2.0\beta_{\rm UV}\sim-2.0 for fλλβf_{\lambda} \propto \lambda^\beta), red in F200W-F444W = 141-4 (βopt+2.0\beta_{\rm opt} \sim +2.0), and are dominated by a point-source like central component. Of the 20 sources with deep ALMA 1.2-mm coverage, none are detected individually or in a stack. For the majority of the sample, SED fits to the JWST+ALMA observations prefer models with hot dust rather than obscured star-formation to reproduce the red NIRCam colors and ALMA 1.2-mm non-detections. While compact dusty star formation can not be ruled out, the combination of extremely small sizes (re50\langle r_e \rangle\approx50 pc after correction for magnification), red rest-frame optical slopes, and hot dust can by explained by reddened broad-line active galactic nuclei (AGNs). Our targets have faint M145014 to18M_{\rm 1450} \approx -14\ \, {\rm to} -18 mag but inferred bolometric luminosities of Lbol=10431046L_{\rm bol} = 10^{43}-10^{46} erg/s, reflecting their obscured nature. If the candidates are confirmed as AGNs with upcoming UNCOVER spectroscopy, then we have found an abundant population of reddened luminous AGN that are at least ten times more numerous than UV-luminous AGN at the same intrinsic bolometric luminosity.Comment: submitted to Ap

    DUALZ: Deep UNCOVER-ALMA Legacy High-Z Survey

    Full text link
    We present the survey design and initial results of the ALMA Cycle 9 program of DUALZ, which aims to establish a joint ALMA and JWST public legacy field targeting the massive galaxy cluster Abell 2744. DUALZ features a contiguous 4×64'\times6' ALMA 30-GHz-wide mosaic in Band 6, covering areas of μ>2\mu>2 down to a sensitivity of σ=32.7 μ\sigma=32.7~\muJy. Through a blind search, we identified 69 dust continuum sources at S/N 5.0\gtrsim5.0 with median redshift and intrinsic 1.2-mm flux of z=2.30z=2.30 and S1.2mmint=0.24S_{\rm 1.2mm}^{\rm int}=0.24~mJy. Of these, 27 have been spectroscopically confirmed, leveraged by the latest NIRSpec observations, while photometric redshift estimates are constrained by the comprehensive HST, NIRCam, and ALMA data for the remaining sources. With priors, we further identify a [CII]158 μ\mum line emitter at z=6.3254±0.0004z=6.3254\pm0.0004, confirmed by the latest NIRSpec spectroscopy. The NIRCam counterparts of the 1.2-mm continuum exhibit undisturbed morphologies, denoted either by disk or spheroid, implying the triggers for the faint mm emission are less catastrophic than mergers. We have identified 8 HST-dark galaxies (F150W>>27mag, F150W-F444W>>2.3) and 2 JWST-dark (F444W>>30mag) galaxy candidates among the ALMA continuum sources. The former includes face-on disk galaxies, hinting that substantial dust obscuration does not always result from inclination. We also detect a marginal dust emission from an X-ray-detected galaxy at zspec=10.07z_{\rm spec}=10.07, suggesting an active co-evolution of the central black hole and its host. We assess the infrared luminosity function up to z10z\sim10 and find it consistent with predictions from galaxy formation models. To foster diverse scientific outcomes from the community, we publicly release reduced ALMA mosaic maps, cubes, and the source catalog.Comment: 33 pages, 16 figures, and 5 tables. Submitted to ApJS. The ALMA products are fully available from here: https://jwst-uncover.github.io/DR2.html#DUAL

    UNCOVER: A NIRSpec Identification of a Broad Line AGN at z = 8.50

    Full text link
    Deep observations with JWST have revealed an emerging population of red point-like sources that could provide a link between the postulated supermassive black hole seeds and observed quasars. In this work we present a JWST/NIRSpec spectrum from the JWST Cycle 1 UNCOVER Treasury survey, of a massive accreting black hole at z=8.50z=8.50, displaying a clear broad-line component as inferred from the Hβ\beta line with FWHM = 3439±4133439\pm413 km s1^{-1}, typical of the broad line region of an active galactic nucleus (AGN). The AGN nature of this object is further supported by high ionization, as inferred from emission lines, and a point-source morphology. We compute the black hole mass of log10(MBH/M)=8.17±0.42_{10}(M_{\rm BH}/M_\odot)=8.17\pm0.42, and a bolometric luminosity of Lbol6.6×1045L_{\rm bol}\sim6.6\times10^{45} erg s1^{-1}. These values imply that our object is accreting at 40%\sim 40\% of the Eddington limit. Detailed modeling of the spectral energy distribution in the optical and near-infrared, together with constraints from ALMA, indicate an upper limit on the stellar mass of log10(M/M)<8.7_{10}(M_{\rm *}/M_\odot)<8.7, which would lead to an unprecedented ratio of black hole to host mass of at least 30%\sim 30 \%. This is orders of magnitude higher compared to the local QSOs, but is consistent with recent AGN studies at high redshift with JWST. This finding suggests that a non-negligible fraction of supermassive black holes either started out from massive seeds and/or grew at a super-Eddington rate at high redshift. Given the predicted number densities of high-zz faint AGN, future NIRSpec observations of larger samples will allow us to further investigate the galaxy-black hole co-evolution in the early Universe.Comment: 14 pages, 6 figures, 2 tables. Submitted to ApJ

    Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Get PDF
    BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function

    First spectroscopic observations of the galaxies that reionized the Universe

    Full text link
    Low-mass galaxies in the early universe are believed to be the building blocks of present-day galaxies. These fledgling systems likely played a pivotal role in cosmic reionization, a major phase transition from neutral Hydrogen to ionized plasma around 600-800 Myr after the Big Bang. However, these galaxies have eluded comprehensive spectroscopic studies owing to their extreme faintness. Here we report the first spectroscopic analysis of 8 ultra-faint galaxies during the epoch of reionization with absolute magnitudes between MUV_{\rm UV} 17\sim -17 to 15-15 mag (down to 0.005 LL^{\star}). The combination of ultra-deep NIRSpec (Near-Infrared Spectrograph) observations and the strong gravitational lensing boost of Abell~2744 allow us to derive the first spectroscopic constraints on the prevalence of faint galaxies and their ionizing properties during the Universe's first billion years. We find that faint galaxies are prodigious producers of ionizing photons with log(ξion\xi_{\rm ion}/ Hz erg1^{-1}) =25.8±0.0525.8\pm 0.05, a factor of 4 larger than canonical values. This means that the total rate of ionizing photons produced by galaxies exceeds that needed for reionization, even for modest values of escape fraction (fescf_{\rm esc} =5%). These findings provide robust evidence that faint galaxies were the main drivers of cosmic reionization at z7z\sim7.Comment: 29 pages, 7 figures, 2 table
    corecore